The genome of bacteria is organized and compacted by the action of nucleoid-associated proteins. These proteins are often present in tens of thousands of copies and bind with low specificity along the genome. DNA-bound proteins thus potentially act as roadblocks to the progression of machinery that moves along the DNA. In this study, we have investigated the effect of histone-like protein from strain U93 (HU), one of the key proteins involved in shaping the bacterial nucleoid, on DNA helix stability by mechanically unzipping single dsDNA molecules. Our study demonstrates that individually bound HU proteins have no observable effect on DNA helix stability, whereas HU proteins bound side-by-side within filaments increase DNA helix stability. As the stabilizing effect is small compared to the power of DNA-based motor enzymes, our results suggest that HU alone does not provide substantial hindrance to the motor's progression in vivo.
Genomic DNA in bacteria exists in a condensed state, which exhibits different biochemical and biophysical properties from a dilute solution. DNA was concentrated on streptavidin-covered single-walled carbon nanotubes (Strep⋅SWNTs) through biotin–streptavidin interactions. We reasoned that confining DNA within a defined space through mechanical constraints, rather than by manipulating buffer conditions, would more closely resemble physiological conditions. By ensuring a high streptavidin loading on SWNTs of about 1 streptavidin tetramer per 4 nm of SWNT, we were able to achieve dense DNA binding. DNA is bound to Strep⋅SWNTs at a tunable density and up to as high as 0.5 mg mL−1 in solution and 29 mg mL−1 on a 2D surface. This platform allows us to observe the aggregation behavior of DNA at high concentrations and the counteracting effects of HU protein (a histone-like protein from Escherichia coli strain U93) on the DNA aggregates. This provides an in vitro model for studying DNA–DNA and DNA–protein interactions at a high DNA concentration.