Collect

BASIC PARAMETERS Find an error

CAS: 1136297-22-7
MF:
MW:
Synonyms:

REPORT BY

LinQi Shi

Nankai Univerisity
follow

Ru Cheng

Suzhou University
follow

Chao Deng

Soochow University
follow
Co-reporter: Jintian Wu, Jian Zhang, Chao Deng, Fenghua Meng, and Zhiyuan Zhong
pp:
Publication Date(Web):June 15, 2016
DOI: 10.1021/acs.biomac.6b00380
Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles have attracted an enormous interest for controlled drug delivery. Their clinical applications are, however, partly hindered by lack of biocompatible, biodegradable and functional surfactants. Here, we designed and developed a novel biocompatible surfactant based on amphiphilic vitamin E-oligo(methyl diglycol l-glutamate) (VEOEG) for facile fabrication of robust and tumor-targeting PLGA-based nanomedicines. VEOEG was prepared with controlled Mn of 1.7–2.6 kg/mol and low molecular weight distribution (Đ = 1.04–1.16) via polymerization of methyl diglycol l-glutamate N-carboxyanhydride using vitamin E-ethylenediamine derivative (VE-NH2) as an initiator. VEOEG had a hydrophile–lipophile balance data of 13.8–16.1 and critical micellar concentration of 189.3–203.8 mg/L depending on lengths of oligopeptide. Using VEOEG as a surfactant, PLGA nanoparticles could be obtained via nanoprecipitation method with a small and uniform hydrodynamic size of 135 nm and positive surface charge of +26.6 mV, in accordance with presence of amino groups at the surface. The resulting PLGA nanoparticles could be readily coated with hyaluronic acid (HA) to form highly stable, small-sized (143 nm), monodisperse, and negatively charged nanoparticles (HA-PLGA NPs). Notably, paclitaxel-loaded HA-PLGA NPs (PTX-HA-PLGA NPs) exhibited better antitumor effects in CD44-positive MCF-7 breast tumor cells than Taxol (a clinical paclitaxel formulation). The in vivo pharmacokinetics assay in nude mice displayed that PTX-HA-PLGA NPs possessed a long plasma half-life of 3.14 h. The in vivo biodistribution studies revealed that PTX-HA-PLGA NPs had a high tumor PTX level of 8.4% ID/g, about 6 times better than that of Taxol. Interestingly, therapeutic studies showed that PTX-HA-PLGA NPs caused significantly more effective tumor growth inhibition, better survival rate and lower adverse effect than Taxol. VEOEG has emerged as a versatile and functional surfactant for the fabrication of advanced anticancer nanomedicines.

Fenghua Meng

Soochow University
follow

Jian Zhang

Soochow University
follow

Zhiyuan Zhong

Soochow University
follow
Co-reporter: Jintian Wu, Jian Zhang, Chao Deng, Fenghua Meng, and Zhiyuan Zhong
pp:
Publication Date(Web):June 15, 2016
DOI: 10.1021/acs.biomac.6b00380
Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles have attracted an enormous interest for controlled drug delivery. Their clinical applications are, however, partly hindered by lack of biocompatible, biodegradable and functional surfactants. Here, we designed and developed a novel biocompatible surfactant based on amphiphilic vitamin E-oligo(methyl diglycol l-glutamate) (VEOEG) for facile fabrication of robust and tumor-targeting PLGA-based nanomedicines. VEOEG was prepared with controlled Mn of 1.7–2.6 kg/mol and low molecular weight distribution (Đ = 1.04–1.16) via polymerization of methyl diglycol l-glutamate N-carboxyanhydride using vitamin E-ethylenediamine derivative (VE-NH2) as an initiator. VEOEG had a hydrophile–lipophile balance data of 13.8–16.1 and critical micellar concentration of 189.3–203.8 mg/L depending on lengths of oligopeptide. Using VEOEG as a surfactant, PLGA nanoparticles could be obtained via nanoprecipitation method with a small and uniform hydrodynamic size of 135 nm and positive surface charge of +26.6 mV, in accordance with presence of amino groups at the surface. The resulting PLGA nanoparticles could be readily coated with hyaluronic acid (HA) to form highly stable, small-sized (143 nm), monodisperse, and negatively charged nanoparticles (HA-PLGA NPs). Notably, paclitaxel-loaded HA-PLGA NPs (PTX-HA-PLGA NPs) exhibited better antitumor effects in CD44-positive MCF-7 breast tumor cells than Taxol (a clinical paclitaxel formulation). The in vivo pharmacokinetics assay in nude mice displayed that PTX-HA-PLGA NPs possessed a long plasma half-life of 3.14 h. The in vivo biodistribution studies revealed that PTX-HA-PLGA NPs had a high tumor PTX level of 8.4% ID/g, about 6 times better than that of Taxol. Interestingly, therapeutic studies showed that PTX-HA-PLGA NPs caused significantly more effective tumor growth inhibition, better survival rate and lower adverse effect than Taxol. VEOEG has emerged as a versatile and functional surfactant for the fabrication of advanced anticancer nanomedicines.

Timothy J. Deming

University of California Los Angeles
follow
Co-reporter: Shanshan Zhang, Daniel J. Alvarez, Michael V. Sofroniew, and Timothy J. Deming
pp:
Publication Date(Web):March 8, 2015
DOI: 10.1021/acs.biomac.5b00124
Polypeptide-based formulations that undergo liquid to hydrogel transitions upon change in temperature have become desirable targets since they can be mixed with cells or injected into tissues as liquids, and subsequently transform into rigid scaffolds or depots. Such materials have been challenging to prepare using synthetic polypeptides, especially when reversible gelation and tunable physical properties are desired. Here, we designed and prepared new nonionic diblock copolypeptide hydrogels (DCH) containing hydrophilic poly(γ-[2-(2-methoxyethoxy)ethyl]-rac-glutamate) and hydrophobic poly(l-leucine) segments, named DCHEO, and also further incorporated copolypeptide domains into DCHEO to yield unprecedented thermoresponsive DCH, named DCHT. Although previous attempts to prepare nonionic hydrogels composed solely of synthetic polypeptides have been unsuccessful, our designs yielded materials with highly reversible thermal transitions and tunable properties. Nonionic, thermoresponsive DCHT were found to support the viability of suspended mesenchymal stem cells in vitro and were able to dissolve and provide prolonged release of both hydrophilic and hydrophobic molecules. The versatility of these materials was further demonstrated by the independent molecular tuning of DCHT liquid viscosity at room temperature and DCHT hydrogel stiffness at elevated temperature, as well as the DCHT liquid to hydrogel transition temperature itself.

Jian Zhang

Soochow University
follow

Wenxin Fu

Institute of Chemistry
follow

Zhibo Li

Institute of Chemistry
follow