Collect

BASIC PARAMETERS Find an error

CAS: 11061-68-0
MF: C256H381N65O77S6
MW: 5793.54364
Synonyms:

REPORT BY

Li Li

Shanghai University
follow

Mary J. Wirth

Purdue University
follow

Nicholas A. Peppas

1 University Station
follow
Co-reporter: Jennifer M. Knipe, Frances Chen, and Nicholas A. Peppas
pp:
Publication Date(Web):February 12, 2015
DOI: 10.1021/bm501871a
Multiresponsive poly(methacrylic acid-co-N-vinylpyrrolidone) hydrogels were synthesized with biodegradable oligopeptide crosslinks. The oligopeptide crosslinks were incorporated using EDC-NHS zero-length links between the carboxylic acid groups of the polymer and free primary amines on the peptide. The reaction of the peptide was confirmed by primary amine assay and IR spectroscopy. The microgels exhibited pH-responsive swelling as well as enzyme-catalyzed degradation targeted by trypsin present in the small intestine, as demonstrated upon incubation with gastrointestinal fluids from rats. Relative turbidity was used to evaluate enzyme-catalyzed degradation as a function of time, and initial trypsin concentration controlled both the degradation mechanism as well as the extent of degradation. Trypsin activity was effectively extinguished by incubation at 70 °C, and both the microgels and degradation products posed no cytotoxic effect toward two different cell lines. The microgels demonstrated pH-dependent loading of the protein insulin for oral delivery to the small intestine.

Dean E. Wilcox

Dartmouth College
follow

Ryan R. Julian

University of California
follow
Co-reporter: Yuanqi Tao and Ryan R. Julian
pp:
Publication Date(Web):February 2, 2012
DOI: 10.1021/bi2018199
A simple mass spectrometry-based method capable of examining protein structure called SNAPP (selective noncovalent adduct protein probing) is used to evaluate the structural consequences of point mutations in naturally occurring sequence variants from different species. SNAPP monitors changes in the attachment of noncovalent adducts to proteins as a function of structural state. Mutations that lead to perturbations to the electrostatic surface structure of a protein affect noncovalent attachment and are easily observed with SNAPP. Mutations that do not alter the tertiary structure or electrostatic surface structure yield similar results by SNAPP. For example, bovine, porcine, and human insulin all have very similar backbone structures and no basic or acidic residue mutations, and the SNAPP distributions for all three proteins are very similar. In contrast, four variants of cytochrome c (cytc) have varying degrees of sequence homology, which are reflected in the observed SNAPP distributions. Bovine and pigeon cytc have several basic or acidic residue substitutions relative to horse cytc, but the SNAPP distributions for all three proteins are similar. This suggests that these mutations do not significantly influence the protein surface structure. On the other hand, yeast cytc has the least sequence homology and exhibits a unique, though related, SNAPP distribution. Even greater differences are observed for lysozyme. Hen and human lysozyme have identical tertiary structures but significant variations in the locations of numerous basic and acidic residues. The SNAPP distributions are quite distinct for the two forms of lysozyme, suggesting significant differences in the surface structures. In summary, SNAPP experiments are relatively easy to perform, require minimal sample consumption, and provide a facile route for comparison of protein surface structure between highly homologous proteins.

Peter Williams

Arizona State University
follow

Wei Dong

Nanjing University of Science & Technology
follow

Wing Fat CHAN

Chinese University of Hongkong
follow

Yi Lu

Fudan University
follow

Wei Wu

Fudan University
follow