Co-reporter: Guochao Liao, Zhifang Zhou, Srinivas Burgula, Jun Liao, Cheng Yuan, Qiuye Wu, and Zhongwu Guo
pp: 466
Publication Date(Web):February 11, 2015
DOI: 10.1021/bc500575a
Antifungal vaccines have recently engendered considerable excitement for counteracting the resurgence of fungal infections. In this context, β-glucan, which is abundantly expressed on all fungal cell surfaces, functionally necessary for fungi, and immunologically active, is an attractive target antigen. Aiming at the development of effective antifungal vaccines based on β-glucan, a series of its oligosaccharide derivatives was designed, synthesized, and coupled with a carrier protein, keyhole limpet hemocyanin (KLH), to form new semisynthetic glycoconjugate vaccines. In this article, a convergent and effective synthetic strategy using preactivation-based iterative glycosylation was developed for the designed oligosaccharides. The strategy can be widely useful for rapid construction of large oligo-β-glucans with shorter oligosaccharides as building blocks. The KLH conjugates of the synthesized β-glucan hexa-, octa-, deca-, and dodecasaccharides were demonstrated to elicit high titers of antigen-specific total and IgG antibodies in mice, suggesting the induction of functional T cell-mediated immunity. Moreover, it was revealed that octa-, deca-, and dodeca-β-glucans were much more immunogenic than the hexamer and that the octamer was the best among these. The results suggested that the optimal oligosaccharide sequence of β-glucan required for exceptional immunogenicity was a hepta- or octamer and that longer glucans are not necessarily better antigens, a finding that may be of general importance. Most importantly, the octa-β-glucan–KLH conjugate provoked protective immunity against Candida albicans infection in a systemic challenge model in mice, suggesting the great potential of this glycoconjugate as a clinically useful immunoprophylactic antifungal vaccine.
Co-reporter: Guochao Liao, Zhifang Zhou, Jun Liao, Luning Zu, Qiuye Wu, and Zhongwu Guo
pp: 123
Publication Date(Web):December 19, 2015
DOI: 10.1021/acsinfecdis.5b00104
With the rapid growth in fungal infections and drug-resistant fungal strains, antifungal vaccines have become an especially attractive strategy to tackle this important health problem. β-Glucans, a class of extracellular carbohydrate antigens abundantly and consistently expressed on fungal cell surfaces, are intriguing epitopes for antifungal vaccine development. β-Glucans have a conserved β-1,3-glucan backbone with sporadic β-1,3- or β-1,6-linked short glucans as branches at the 6-O-positions, and the branches may play a critical role in their immunologic functions. To study the immunologic properties of branched β-glucans and develop β-glucan-based antifungal vaccines, three branched β-glucan oligosaccharides with 6-O-linked β-1,6-tetraglucose, β-1,3-diglucose, and β-1,3-tetraglucose branches on a β-1,3-nonaglucan backbone, which mimic the structural epitopes of natural β-glucans, were synthesized and coupled with keyhole limpet hemocyanin (KLH) to form novel synthetic conjugate vaccines. These glycoconjugates were proved to elicit strong IgG antibody responses in mice. It was also discovered that the number, size, and structure of branches linked to the β-glucan backbone had a significant impact on the immunologic property. Moreover, antibodies induced by the synthetic oligosaccharide–KLH conjugates were able to recognize and bind to natural β-glucans and fungal cells. Most importantly, these conjugates elicited effective protection against systemic Candida albicans infection in mice. Thus, branched oligo-β-glucans were identified as functional epitopes for antifungal vaccine design and the corresponding protein conjugates as promising antifungal vaccine candidates.Keywords: carbohydrate; fungus; glycoconjugate; vaccine; β-glucan